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A CONSORTIUM FOR CHANCE-INFORMED 
COMMUNICATION OF CLIMATE RISK 
We intend to form a consortium of climate scientists, insurance service providers, policy makers, financial 
managers, and others to establish standards for communicating the uncertainty of climate risk. The goal 
is to create a collaborative network that explicitly communicates the chances of adverse events, not just 
average impact. Furthermore, it is required that such information be accessible by local decision makers 
without statistical training for use in their own chance-informed calculations. 

Chances Instead of Averages 
Uncertain climate and weather-related events have emerged as significant risks for local financial planners. 
Unfortunately, this risk is usually reduced to a single number—an average—by the time it reaches the 
decision maker. This results in a class of systematic errors known as the Flaw of Averages,i of which the 
average family with 1½ children is a classic example.  

How can looking at average impact misguide risk management? Suppose you 
were told that the average annual wildfire impact on your community was a fire 
covering 1/10th of an acre. You are not concerned because this could quickly 
be extinguished by your fire department. But this same average impact would 
also apply to a 10-acre fire that had an annual chance of one in a hundred, 
which would devastate your town. The potential scale of the impact, which was 

INTRODUC TION

“All Models are Wrong, but Some are Useful.” 
BRITISH STATISTICIAN, GEORGE BOX

3

Average family  
with 1⅟2 children

FLAW OF AVERAGES
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not contained in the average, obviously influences your risk attitude. A chance-informed estimate would 
have explicitly contained the chance (1/100) of a 10-acre fire. In addition, this estimate could be used 
in downstream risk mitigation calculations, which would themselves be chance-informed. But based on 
averages, a guaranteed 1/10th acre fire and a one-chance-in-100 10-acre fire are indistinguishable.  

Worse yet are qualitative risk ratings that have no analytical basis.  For example, most city and/or county 
governments produce hazard mitigation plans. These plans list the most important natural hazards facing 
the jurisdiction. Each hazard is given a risk score, such as “high”, “medium”, or “low”. Now imagine that two 
city or county board members are looking at this plan. One is an avid sports gambler and crypto currency 
speculator while the other has never so much as purchased a lottery ticket. Do you think they will have a 
similar interpretation of those scores? No transformation of averages into single number risk scores will 
cure the Flaw of Averages. 

The Technical Appendix contains additional climate specific examples that can lead to suboptimal decisions. 

INTRODUC TION

Based on averages, a guaranteed 1/10th acre fire and a 
one-chance-in-100 10-acre fire are indistinguishable.  
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THE NETWORK EFFECT 
In networks, the value that users derive from a service, increases with the number of users. Economists 
refer to this as the Network Effect. For example, if only two people in the world had phones, only one 
conversation would be possible. With five phones, there would be the potential for ten conversations, and 
as the number of phones increases further, the number of potential conversations grows roughly as the 
square of the number of users, bringing ever increasing value to owning a phone. 

An earlier and equally transformative network was the railroad, which we will use for analogy here in terms 
of factories delivering goods to consumers. In this analogy, the goods being delivered today are averages, 
leading to flawed decisions. Our goal is to create the infrastructure for delivering data with embedded 
chances, for making significantly better decisions as outlined in the table below. 

R AILROAD CLIMATE NETWORK

Track gauge (4 ft 8 ½ in. for North America) Standardized format for conveying chance informed data

Factories manufacturing goods Climate and weather-related simulations

Freight Chance-informed simulation results: SIP Libraries 

Consumers Local Jurisdictions and Property Owners 
	 Decisions to Self-Insure or purchase Commercial Policies 
	 Mitigation Decisions 
	 Infrastructure planning 

Insurance companies 
	 Premium pricing 

Power Utilities 
	 Demand Planning 
	 Operational Risk Mitigation 
	 Insurance Decisions 

5

THE NET WORK EFFEC T
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PROBABILITY MANAGEMENT EMBEDS CHANCES IN DATA 
The recent discipline of probability managementii encapsulates uncertainty into data, which can link 
the stakeholders in climate related risks into a chance-informed collaborative network for improved risk 
management. Probability management has its origins in Monte Carlo simulation, a computerized method 
of modeling uncertainty by bombarding a mathematical model with random inputs much as one estimates 
the stability of a ladder by shaking it with random forces before climbing on it. 

�	Stochastic Information Packets—SIPs 
Instead of representing uncertainties as single number averages, probability management uses 
Stochastic Information Packets (SIPs), each of which can express thousands or even millions of 
numbers denoting possible future flood levels, hurricane strengths or wildfire occurrences. A SIP of 
die rolls for example might contain the results of either rolling or simulating a die 10,000 times.  

�	Averages and Chances with SIPs 
The average of the SIP can always be found by adding all the elements and dividing the sum by the 
number of elements. The chance of getting a particular outcome, say “the die roll is greater than 2,” 
can always be calculated by counting all the numbers greater than two, and dividing by the number  
of elements.  

�	SIPs are Platform Agnostic 
The network we envision must not be tied to any particular computer platform. For example, 
regardless of where SIP Libraries are computed, it is important that they may be interpreted in 
Microsoft Excel, which has roughly three quarters of a billion users worldwide. Excel can interpret  
SIPs using its internal Index and Data Table functions without the need for add-ins or additional 
software as demonstrated in the dashboard described below. 

PROBABILIT Y MANAGEMENT EMBEDS CHANCES IN DATA

CHANCE S: CONVE YING HA Z ARDS AND NATUR AL C ATA S TROPHE S THROUG H E X TR AC TED S IMUL ATIONS

https://en.wikipedia.org/wiki/Probability_management
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PROBABILIT Y MANAGEMENT EMBEDS CHANCES IN DATA

�	A Chance-Informed Dashboard 
GFOA and Probability Management have already successfully worked with the global insurance and 
risk analytics firm AON to develop SIPs for natural hazards, which have been incorporated into models 
used by local government decision-makers. We believe that this work represents a breakthrough, and 
we are eager to see it evolve. Because it is based on open standards, a consortium of both producers 
and consumers of climate modeling would be the ideal environment for such evolution to take place.  

GFOA, AON, and ProbabilityManagement.org have created a SIP-based proof-of-concept dashboard 
based on this networked approach as shown in Figure 1. 

First AON created a large complex simulation of the financial impact of wildfire risk for a particular 
city. Then the results were delivered to GFOA as a SIP Library with 10,000 trials. This was read into 
a ChanceInformed Excel dashboard (available here) that reflects the impact of wildfire on the city’s 
chances of depleting their financial reserves over each of ten years. The users of this dashboard 
required no more understanding of the AON model that generated the SIP, than the users of lightbulbs 
require of the powerplant that generates their electricity.  

FIGURE 1  |  THE GFOA CHANCE-INFORMED DASHBOARD 

CHANCE S: CONVE YING HA Z ARDS AND NATUR AL C ATA S TROPHE S THROUG H E X TR AC TED S IMUL ATIONS

https://www.probabilitymanagement.org/climate-change
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The main features of this model are: 

1.	 Actionable Data: Because the data from AON had 10,000 trials embedded in it, the user may change 
parameters such as initial reserve level or whether to purchase insurance, and immediately observe the 
chances of depleting reserves by year.  

2.	 Platform Agnostic: The model uses the open SIPmath™ Standard from non-profit 
ProbabilityManagement.org to run 10,000 simulated trials for each of the ten years in native Excel 
without the use of add-ins or other software. Similar models using the standard would give identical 
results in R, Python or any other computer environment.  

3.	 Communication Of Uncertainty: The data from AON came from a sophisticated large-scale wildfire 
simulation. Because such models can take days to execute and require highly trained personnel, they 
may not be readily queried by financial managers. However, it was straightforward to convert the 
relevant output to a SIP Library containing 10,000 potential outcomes for use by the GFOA model. The 
result is a dashboard that updates in less than a second, not three days, when the user changes their 
decision parameters.  

GFOA has built similar models for cities based on AON Hurricane and Earthquake SIP Libraries. They have 
also used flood simulation results from First Street to develop SIPs for another city’s risk model.  

PROBABILIT Y MANAGEMENT EMBEDS CHANCES IN DATA
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CREATING A FRAMEWORK 
Until recently a framework for the communication of climate and weather risk uncertainty would have 
been a tall order due to three barriers: accessible models, data, and analytical tools. 

Accessible Models 
Prior to 1952, the financial investment industry was committing the same set of errors made today in 
climate decisions. That is, they were analyzing investments in terms of single number average returns. 
Then Dr. Harry Markowitz, Nobel Laureate in Economics, invented Modern Portfolio Theoryiii, which 
moved investment analysis from averages into the world of variability, interrelationships, and risk/return 
tradeoffs. This kicked off a 20-year period of improved investment models known collectively as Modern 
Finance, and financial managers in all areas of industry and government are familiar with its basic tenets.  

The methods of Modern Finance are not appropriate for modeling climate or weather risks themselves 
but are a perfect fit for those making investment decisions in the face of such uncertainties. Modern 
Finance boils down to observing the tradeoffs between expected costs or revenues and the chances of 
specified desirable or undesirable outcomes. Furthermore, analysis that may take hours or days to run can 
produce libraries of thousands of precomputed trials. These may be used to deliver nearly instantaneous 
results in an interactive, experiential environment that is more accessible to the typical manager. 

Data
The recent discipline of probability management represents 
uncertainties as auditable data that obey both the laws of 
arithmetic and the laws of probability. In 2013, Dr. Savage and Dr. 
Markowitz co-founded 501(c)(3) nonprofit ProbabilityManagement.
org to develop the open, cross platform SIPmath™ Standard for 
communicating uncertainty.  

This standard plays the role in the arithmetic of uncertainty that 
Hindu/Arabic numerals play in standard arithmetic. Much as numeric 
values are encoded in the symbols 0 through 9, uncertainties are 
encoded in data arrays called Stochastic Information Packets (SIPs). 
And this data is fully auditable through multiple levels of analysis. 
This is best understood through an example. Portions of the SIPs for 
Government Losses in the first two years of the GFOA/AON model 
are shown in Table 1. Instead of a single number, each SIP contains 
10,000 numbers, one for each simulated trial.  

CRE ATING A FR AME WORK

TABLE 1 
A PORTION OF THE SIP LIBRARY 
USED IN THE GFOA MODEL

Trial GovtLossY1 GovtLossY2
1 $0 $0
2 $0 $0
3 $0 $0
4 $0 $0
5 $0 $0
6 $0 $17,802,103
7 $0 $0
8 $0 $0
9 $6,985,603 $0

10 $0 $14,547,455
• 
•

• 
•

• 
•

9,991 $0 $0
9,992 $0 $0
9,993 $0 $48,108,148
9,994 $0 $0
9,995 $0 $7,340,060
9,996 $0 $0
9,997 $0 $0
9,998 $0 $0
9,999 $0 $0

10,000 $0 $0

CHANCE S: CONVE YING HA Z ARDS AND NATUR AL C ATA S TROPHE S THROUG H E X TR AC TED S IMUL ATIONS
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Table 2 shows how to extract chance-informed information from SIPs using native Excel formulas. Python, 
R, or any other platform would have analogous formulas. Note that you can always summarize the results 
of a SIP with an average but given the average you cannot infer the SIP. And the average may not be useful 
as an input or source for other predictions. It is only by preserving all of the simulation data in a SIP (and 

not averaging it), that you can 
use one simulation to inform 
another simulation. 

Beyond extracting statistical 
information from SIPs, one can 
perform ordinary arithmetic, 
trial by trial. For example, the 

SIP of Total Government losses across the first two years would 
simply involve summing the SIPs in Table 1 row by row as shown 
in Table 3, which shows only three of the 10,000 trials. On trials 
6 and 9 there were fires in year 2 and year 1, respectively, but in 
trial 9882, there were fires in both years.

Storage Requirements 
Given the huge amounts of data in climate risk simulations one might be concerned about the storage 
requirements of SIP Libraries. Fortunately, there are multiple methods to express Virtual SIPs that require 
orders of magnitude less storage than the raw trials themselves. 

Data Repositories 
SIP Libraries are the ideal format for creating curated repositories of climate and weather-related data. 
Such libraries might be hosted by insurance service firms such as AON, or nonprofits such as Climate and 
Wildfire Institute, First Street, or Vibrant Planet. 

Analytical Tools 
There is a common misconception that complex tools are required to interpret the impacts of climate risk. 
What is true is that climate and weather models are very complex time dynamic simulations that go well 
beyond standard Monte Carlo methods. Because it is not possible for decision makers to run these models 
themselves, the output is generally provided as single numbers, usually averages. While averages may be 
summed to get the correct average of the total, this leads to another serious form of The Flaw of Averages 
when the risks are interrelated.  

TABLE 2  |  EXAMPLES OF EXTRACTING STATISTICAL INFORMATION FROM SIPs

Desired Result Formula
Average Government Losses in Year 1 =AVERAGE(GovtLossY1)
Chance that Govt. Losses in Yr. 2 exceed $15,000,000 =COUNTIF(GovtLossY2,”>15000000”)/10000
99th Percentile of Losses in Yr. 1 =PERCENTILE(GovtLossY1,0.99)
The Loss in Year 2 on the 9,995th Trial =INDEX(GovtLossY2,9995)

TABLE 3  |  SUMMING TWO SIPs

Trial GovtLossY1 GovtLossY2 Y1Y2Total
• 
•

• 
•

• 
•

• 
•

6 $0 $0 $17,802,103
• 
•

• 
•

• 
•

• 
•

9 $6,985,603 $0 $6,985,603
• 
•

• 
•

• 
•

• 
•

9882 $11,652,656 $110,602,857 $122,255,512

CRE ATING A FR AME WORK

CHANCE S: CONVE YING HA Z ARDS AND NATUR AL C ATA S TROPHE S THROUG H E X TR AC TED S IMUL ATIONS



11

We have also witnessed the output of single numbers even more erroneous than averages, for example, 
extremes, such as the maximum impact recorded in a simulation run, or the 95th percentile. When extreme 
numbers are aggregated, for example, to sum up the risk across a geographical area, the total may be 
orders of magnitude greater than the true risk, leading to the wrong mitigation strategy.  

All climate and weather models, however, can output SIP Libraries, which convey uncertainty to users 
of virtually any analytical tool, such as Excel, Python, or R, in which chance-informed interpretations are 
expressed as single formulas, as described in Table 2. This frees the decision maker from being a statistical 
expert or being tied to proprietary software. The question of “What analytical software should we use?” 
will typically be answered with “Whatever you are using now.” 

A Division of Labor 
An open data standard allows a division of labor between the data scientists and the decision makers, 
just as electric current standards allow a division of labor between engineers at power plants and people 
at home using light bulbs and vacuum cleaners. In this context, the model discussed above is a decision 
appliance to be used by city managers, powered by a SIP Library generated by a complex power plant 
at AON. Similarly, a SIP Library of Flood impact was generated by First Street and used by GFOA with 
another municipality.  

CRE ATING A FR AME WORK
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THE CONSORTIUM  
GFOA and ProbabilityManagement.org seek other interested parties in forming a consortium of climate 
scientists, insurance service providers, policy makers, financial managers, and others to establish standards 
in the communication of climate risk. The goal will be to create the infrastructure for a collaborative 
network for climate-related decisions that explicitly acknowledge uncertainty. 

Specifically, we hope to establish standards in:

1.	 Data
a.	 Statistically Coherent Stochastic Hazard Data
b.	 Asset Impact Data

2.	 Simulation models
a.	 Climate and Weather-Related Hazards
b.	 Impact Models and Fragility Curves

3.	 Stakeholder Communication
a.	 Preferences
b.	 Policies
c.	 Chance-Informed Dashboards
d.	 Education
e.	 Best practices

By enabling new channels of communication for climate risks, we hope to improve decision making at all 
levels of this complex issue.

1 2

THE CONSORTIUM
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TECHNIC AL APPENDIX

TECHNICAL APPENDIX

The Flaw of Averages 
A common definition of risk is: Risk = Likelihood x Impact

Mathematically this is the average impact that one would expect and, as such, runs afoul of the Flaw of 
Averages. For example, consider two risks. One involves one chance in 10 of a single fatality, while the 
other involves one chance in ten million of one million fatalities. If we calculate the two risks according 
to the above definition, we have:  

Risk 1 = 1/10 x 1 = 0.1 fatalities, while Risk 2 = 1/10,000,000 x 1,000,000 = 0.1 fatalities. 

The risk scores are equal! Yet no one would consider these to be the same risk.

This example is just the tip of the iceberg as there are several variants of the Flaw of Averages, and 
they are triggered every time risk is represented as a single number such as a Risk Score. For example, 
imagine that you represented the uncertainty of rolling dice with averages. This would be like practicing 
for a game of craps using flat dice displaying 3½ dots on each side. This is no more erroneous than using 
averages in climate risk. 

EXAMPLE 1  |  NONLINEARITY 

The Average Impact is Not the Impact of the Average Hazard

This example displays what is known as nonlinearity because it involves an impact that does 
not vary linearly with the hazard. Consider a region where the water level has a 50% chance of 
either rising or falling one foot, which implies an average rise of 0 feet. Suppose that at 0 feet or 
below, the economic impact is $0, but at a one foot rise the impact is $1 billion. Then the impact 
of the average flood is zero, but the average impact is 

50% x $1 billion + 50% x $0 = $500 million ≠ impact of the average flood.

For the model to be linear there would have needed to be a $1 billion economic benefit in the 
event of a one-foot drop in water level. In this case the average outcome is  

50% x $1 billion -50% x $1 billion = $0 = impact of the average flood. 

Because most climate related risks are nonlinear, it is vital not to address them in terms of 
average hazards. 

Average Sea Level 
Rise = Zero

Loss Associated with 
Average Rise = $0

Average Loss =  
1/2 $Billion

Up a Foot
50%

 50%
Down a Foot

$1 Billion
50%

 50%
Zero
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EXAMPLE 2  |  AVERAGES IGNORE INTERRELATED RISKS 

Although wildfire models capture the implications of fire 
spread, the typical measure of annual wildfire risk at a given 
location is the average consequence at that location. It is 
calculated as the product of the annual likelihood of fire 
at that location, extracted from a wildfire model, and then 
multiplied by the expected consequence of wildfire at that 
location based on the assets at that location. Consider a 

single asset: a house worth $500,000, which burns down once in 100 years on average. If the 
fire risks for each house are independent of each other, then we would expect one house to burn 
down each year. The average annual fire risk is calculated as $5,000, as shown below.

Averages do have one useful property, they are additive. That is, imagine Town A consisting  
of 100 such houses. It is easy to calculate the average risk for the town as a whole, as follows: 

Average annual total fire risk of Town A = 100 times the risk of 1 house, or 100 x $5,000 = 
$500,000. 

Assuming that the fires are independent, then one can expect one of the 100 houses to burn 
down every year on average. That is in town A, a house fire is a “One Year Event.”

Averages are Blind to Interrelationships 

But the assumption that the fires are independent is dangerous. Imagine Town B, which also 
has 100 such houses. Again, each $500k house still burns down once in 100 years on average, 
but in this case, instead of 1 house burning every year, on average, all 100 houses burn down 
at once every hundred years. There is a lock-step interrelationship between fire at any house, 
and fire at all the other houses, the total loss of the town is a 100-year event. Averages are 
blind to these interrelationships so the average annual risk for Town B is found the same way 
we did it for Town A: $500,000. 

Imagine that you are the disaster 
planner for Town A or Town B. Each 
planner gets the same risk information: 
“Your average annual fire risk is 
$500,000.” Does that mean the two 
towns should have the same disaster 
plan? Of course not. Town B faces an 
existential threat. But you would never 
know it from the average risk.  

Full 
Distribution

Average 
Only

Economic  
Fire Impact

RIGHT

Economic  
Fire Impact

WRONG

Town A
Average Total Annual  

Fire Risk of 100 Houses
=100 x $5,000 = $500,000

A One Year Event A One in 100 Year Event

Town B
Total Annual Fire Risk  
of 100 Houses = 100 x  

$5,000 = $500,000

Annual Fire Risk = =      $5,000x
1/100 $500K
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SIP Libraries for Storing Uncertainties 

Don’t Blame the Climate Scientists 

Climate Scientists use powerful computer simulations today that, in effect roll millions of dice representing 
uncertain carbon dioxide output, deforestation, the evolution of energy technology, behavior of the jet 
stream, etc.  

Garbage in Insight Out 

As discussed above, Monte Carlo simulation is analogous to shaking a ladder to test its stability before 
climbing on it. The shaking forces are not the same as the climbing forces, so in a sense it is “Garbage 
In Garbage Out.” But resolving uncertainty is an iterative process that needs to start somewhere and 
then proceed through generations of improved estimates. So, the insight gained by shaking ladders is an 
important risk mitigation. For example, you have the option to relocate the ladder. The same can be said 
for climate models. Abiding the admonition of George Box, they do not need to be completely accurate to 
be useful. If you capture the uncertainties in models, they can both provide valid approximate insights and 
also lead to better models. 

Probability Management 

It is possible to capture useful results from virtually any climate model in a SIP Library, which may be used 
both to network climate simulations together and to convey the results to stakeholders as actionable 
data. The basic approach has been applied for decades in an ad hoc manner both in Financial Engineering 
to implement the ideas of Modern Finance, and in the Insurance Industry to aggregate risks. SIP Libraries 
enhance climate modeling in three areas. 

1.	 Curing the Flaw of Averages: 	SIPs replace single average risk numbers with thousands of outcomes. 
This correctly models nonlinear climate impacts, and interrelated climate hazards.

2.	 Modular Architecture: A modular approach may allow separating the Hazard and Asset Models from 
each other. This simplifies both the structure and maintenance of the models and allows them to be 
quickly applied at various scales.  

3.	 Actionable Results: SIP Libraries will allow decision makers at all levels from small towns to entire 
regions of the country, to easily access the information generated by the large-scale Hazard Models for 
use within risk assessment dashboards in virtually any software platform including native Excel without 
the use of macros or add-ins.

TECHNIC AL APPENDIX
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Modular Architecture 

Monolithic Climate Models 

Climate risks are typically modeled with large monolithic computer 
simulations which represent uncertainties explicitly, as in rolling dice. 
These models often include both simulated hazards and impacted 
assets for a particular region of interest. For example, wildfires and 
the impact on houses that can burn down. Such simulations are 
highly evolved and may be applied at various levels of granularity. 
They may need to run for days to get statistically stable results. The 
outputs consist of detailed probability distributions that capture the 
potential economic impact of wildfire in the specified region. 

With this monolithic architecture, if a single large new building is 
built, or the region of interest is extended to include a separate county, the entire simulation needs to 
be re-run to determine the change to overall fire impact. Furthermore, monolithic models are difficult to 
maintain and may collapse under their own weight.

Curing the Flaw of Averages 
Consider a municipality with a nonlinear impact response to flood height as shown in the table below.  
The Flaw of Averages in Climate Changeiv describes in detail how SIP Libraries correctly estimate nonlinear 
impacts of climate hazards such as this. 

The below interactive SIPmath demonstration model of this example may be downloaded here.

Crest (m) Damage in $MM
5 $75

4.3 $50
4 $30

3.7 $20
2.8 $5

1.82 $1
7 $0

1 6

TECHNIC AL APPENDIX

Monolithic Impact Simulation 
Combines Hazards and Assets

Assets

Hazard

Economic  
Fire Impact
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Asset Economic Impact SIPS are Summed with Vector Arithmetic

Economic  
Fire Impact

Asset 1
Impact SIP

=+ . .+
Asset 1

Impact SIP
Asset 1,000
Impact SIP
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Separating Hazards from Assets 

In many cases, SIP Libraries can be used to disaggregate monolithic models into separate sub models 
that may be simulated asynchronously, for example, Hazards and Assets. Each sub model produces a SIP 
Library, which may be aggregated by summing through vector arithmetic to produce a SIP of the total. 

Assume that we are modeling the fire risk of a municipality with 1,000 buildings. From a theoretical 
perspective this represents the same total number of calculations as the monolithic approach, but it offers 
numerous advantages, including model simplicity, scalability, extensibility, and additivity across hazards. 

1.	 Model simplicity
	 The monolithic approach not only contains a complex climate hazard model, but also 1,000 fragility 

curves, that is, the impact for each house based on the intensity of fire, which is driven by the fire result 
to calculate the economic impact for each building. In the modular approach, the hazard simulation 
module stands alone, based on the general burn characteristics of the region, thus decreasing 
complexity and increasing speed. We still need to run the fire SIP Library through each of the buildings. 
But this can be done in parallel, asynchronously, and potentially on different computer platforms, with 
the results totaled at the end using vector arithmetic.

2.	 Scalability
	 Suppose after the simulation is run, we want 

to add a building. To emphasize that this 
works at any scale, we will revise total fire 
risk to include a doghouse that was left out of 
the original simulation. Note that the Hazard 
Simulation does not need to be rerun because 
the same Fire SIP Library may be used to 
create the Doghouse Impact SIP. This is added 
to the Economic Fire Impact SIP using vector 
arithmetic with the whole process potentially 
occurring nearly instantaneously. It is admittedly unlikely that a city would bother to rerun a risk 
assessment after adding a doghouse. But this approach also addresses the needs of a dog considering 
fire insurance, who can use the Fire SIP Library to determine a fair price for the premium.

Revised Economic Fire SIP
Revised Economic Flood SIP found  
nearly instantaneously by adding  

doghouse SIP to original impact SIP

Hazard 
Simulation

Fire SIP 
Library

Economic  
Fire Impact

Economic  
Fire Impact

Doghouse 
Impact SIP

Fire SIP Library

=+

SIP Revised SIP
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	 The assumption here is that the doghouse makes a negligible contribution to the overall fuel load. This 
would not be the case if one were adding an oil refinery, in which case the fire hazard model would 
need to re-run. This highlights the need for establishing best practices and modeling protocols when 
using this approach.

3.	 Extensibility
	 Consider other hazards, for example earthquake, or flood as shown. Some of these will be independent 

of each other, while wind damage would need to be coupled to flood in coastal regions.

TECHNIC AL APPENDIX

Economic Flood Impact Created in the Same Manner as the Fire SIP

Economic  
Fire Impact

Asset 1
Impact SIP

=+ . .+
Asset 1

Impact SIP
Asset 1,000
Impact SIP

Hazard 
Simulation

Flood SIP 
Library

4.	 Additivity
	 Total Economic Risks across all hazards may 

be found nearly instantaneously by merely 
adding the Economic Impact SIPs of the 
various hazards using vector arithmetic.

Economic Impact SIPs are Summed Across 
Hazards with Vector Arithmetic for Total Impact

Economic  
Flood Impact

Economic  
Fire Impact

Economic 
Total Impact

+ =
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